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Perturbative analysis of Newton-equivalent quantum quartic anharmonic oscillators
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Abstract

Newton-equivalent Hamiltonians are Hamiltonians whose classical dynamics agree with those from the standard
Hamiltonian. In this work, we perturbatively work out energy spectra and wavefunctions of quantum mechanical
Newton-equivalent Hamiltonians with quartic-anharmonicity anharmonic oscillator potentials. We show example results
for low order perturbations. Higher orders can also be obtained using further iterations. Our perturbative results in
the limit of zero anharmonicity are consistent with the exact results of a Newton-equivalent simple harmonic oscillator
analyzed by Degasperis and Ruijsenaars in 2001. We also study other orderings of the Newton-equivalent
anharmonic oscillator Hamiltonians and show that our perturbative results are consistent with the intertwining relations,
which are in the framework given by Sasaki and Odake in 2009 and in 2011, relating eigenenergies of different

orderings of the Hamiltonians.

Keywords: Perturbation theory, anharmonic oscillator, energy spectra and wavefunctions, Newton-equivalent

Hamiltonian, intertwining relations
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Introduction

In Hamiltonian analysis, the dynamics of a classical point
particle of mass m moving in one dimension subject to
an external potential V(x)is usually described by starting

from the Hamiltonian

pZ
He (6,p) = 5—+V (0. (1)

m

One type of alternative Hamiltonian giving the
same dynamics was obtained by Degasperis and
Ruijsenaars’. Such Hamiltonians would be called Newton-
equivalent Hamiltonians. The idea of the construction was
to look for the Hamiltonian as a product of a function of
P and a function of x.This results in a one-parameter

family of Hamiltonians:

H, = 4mc? cosh (zrﬁ) (1

1/2
V(x) ) @)

2mc?

where the parameter ¢ was interpreted as the
speed of light. Since c is a parameter, different ¢ corre-
sponds to different Hamiltonians, and hence describes
different systems. In the limit ¢ —> oo, the Hamiltonian H,
reduce to Hg :

lim (H, — 4mc?) = Hp.
c—00

©)

Note that the interpretation that ¢ is the speed
of light is given only by Degasperis and Ruijsenaars’.
However, throughout our work, we are not going to follow
this interpretation. This is because ¢ can take any value,
and is not just limited to 3 x 108 m/s. By “any values”
we mean that ¢ can be anything from 0 m/s to co m/s.
to For the Hamiltonians in eq. (2), different c corresponds
to different Hamiltonians. For example, the Hamiltonian
H, with ¢ = 3 x 108 m/s is differed from H, with ¢ =
2.4 x 102 m/s, and both of them are differed from H, with
c=9x 10 m/s, etc.

Another reason we are not going to view as the
speed of light is that the theories that we discuss in this
paper are non-relativistic. All the Hamiltonians in eq. (2)
with any value of give rise, via Hamilton’s equation, to

the usual Newton’s equation, which is exactly the same
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as that obtained from the Hamiltonian H£ in eq. (1). Note
that Newton’s equation is non-relativistic, and that the
parameter ¢ does not appear anywhere. So the Hamilto-
nians in eq. (2) are not relativistic Hamiltonians.

Based on these reasons, we have made clear
that we do not interpret ¢ as a speed of light as in
Degasperis and Ruijsenaars’. So it should not raise any
concern when c takes values different from 3 X 108 m/s.
For us, we only view ¢ as a parameter which happens to
have the same symbol as speed of light and happens to
have the unit m/s. Having commented on this point, let
us now proceed.

The system for eq. (2) with a simple harmonic
oscillator (SHO) potential as well as its quantization was
investigated by Degasperis and Ruijsenaars’'. Let us call
this system a Newton-equivalent simple harmonic
oscillator (NESHO). The complete energy spectra and
wavefunctions were studied and determined. The result
suggests that although classically, the whole family of
Newton-equivalent Hamiltonitans describe the same
dynamics, the quantum version does not need to agree.
This observation is further confirmed by an investigation
of Calogero and Degasperis®.

There are several paths to generalize or give
alternative viewpoints. Let us spell out some of them. The
first one®™ discussed quantization of Newton-equivalent
Hamiltonian which is also essentially of the form in eq.
(2), but with an alternative operator ordering. In addition,
Newton-equivalent Hamiltonian whose classical version

takes the form*, after an appropriate rescaling,

H, = 4mc?
<1+ V(x)) p? 1 4)
2mc?2) 4m?c? _V)
2mc?

was investigated. In contrast to eq. (2), the
dependencies on x and P are not separated. This
Hamiltonian also connects to the standard one in the
limit ¢ > oo, in the same way as that of eq. (3). The
quantization of the Hamiltonian in eq. (4) with simple
harmonic potential was discussed. The energy spectra

and wavefunctions were obtained.
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For the second path', NESHO is in fact linked
to Wigner quantum mechanics®, which is considered a
noncanonical quantization. A generalization of Degasperis
and Ruijsenaars1 in this framework is given in Blasiak,
Horzela and Kapuscik®.

In the third path™, the idea is that quantum
Hamiltonian obtained in Degasperis and Ruijsenaars’ can
be put in the form of discrete quantum mechanics. The
analysis in this framework gives interesting consequences.
As an example, this gives intertwining relations which
allows one to obtain energy spectra of alternative
orderings of some given Hamiltonians. Another example
is that new orthogonal polynomials have to be used in
order to write down wavefunctions.

In the fourth path'"®, procedures to generate
classes of Newton-equivalent Hamiltonians were
developed and example Hamiltonians were generated.
This path is developed quite recently, and so far only the
classical aspects are discussed.

In this paper, we focus on a development which
is mostly related to the third path. Although within the
third path the procedure was already given in order to
generate energy spectra and wavefunctions of some
given classes of Hamiltonians, there is no guarantee that
these can be given in closed forms. For example, even
by using the standard Hamiltonian (the quantization of
eq. (1)), quantum anharmonic oscillator needed to be
solved using perturbation theory. So it is natural to expect
that its Newton-equivalent version, called Newton-
equivalent anharmonic oscillator (NEAHO), would also
need assistances from perturbation theory. It is therefore
our goal to study this. In fact, the only NEAHO that we
are going to study in this paper are the ones with quartic
anharmonicity. Nevertheless, we would still call this

specific system as NEAHO.

Review of NESHO and its energy spectrum
Let us first review the construction of classical
and quantum mechanical NESHO and their analyses'.
By introducing B = (2mc) ™" the Hamiltonian (2)

becomes, after subtracted by a constant shift 1/(mB?),
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1 1
— 2 5
Hy (x,p) = gz cosh(Bp) (1+2mB2V ()7 5
1
mpB?
The potential for a simple harmonic oscillator is

given by

2,2

1
Vix) = S mwx

In this case, the Hamiltonian reads

1
Hp(x,p) = e cosh(fp)

1 1
x (1+ B*m?w?x?)2 — B
This is the Hamiltonian for the classical NESHO.

One recovers the SHO Hamiltonian in the limit 8 — 0.
By construction, the Newton’s equation obtained
from the classical NESHO Hamiltonian coincides with that
from the standard SHO Hamiltonian. Therefore, the
dynamics do not depend on the parameter . In this sense,

the whole family of the Hamiltonian (7) are equivalent.
Let us now turn to the quantum NESHO. The
canonical quantization, by promoting P b, x = %, of the
Hamiltonian (7) is ambiguous as P and % no longer
commute. The resulting Hamiltonians based on different
ordering of the operators P and % could lead to a different
theory. However, let us ignore an extensive discussion
of this problem and simply focus on a particular choice
of ordering. Consider a choice made by Degasperis and
Ruijsenaars’ which is based on physical insight of

Ruijsenaars™. In this case, the NESHO Hamiltonian reads

1. :
Hp = Z,[?—Zm(B+ exp(BpP) B- + (i - _i)) 8)
1 1h
w2

. 1 1
where B, = (1 + ifmw®)z, B_ = (1 — ifmwX)-.

The terms in the second line of eq. (8) were not
considered by Degasperis and Ruijsenaars'. However,
we include them in order that the NESHO Hamiltonian

reduces to the standard quantum mechanical SHO
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Hamiltonian in the limit § — 0. These terms simply
provide a constant shift to the Hamiltonian, and hence it
is safe to introduce them. The energy spectrum and
wavefunctions of NESHO were also obtained by
Degasperis and Ruijsenaars’. For this, the ladder
operators were used. The idea is to start from the
expression of lowering operator in terms of X and b, and

then replace p by —im|X%, ﬁﬁ]/h. This gives

g = @(f +'% [f,ﬁ,;]) o

; ﬁ;nw (B,ePPB_ — (i - —i))).

It satisfies the following commutation relations

[Ag, Bp] = hwdy, [A;,ﬁﬁ] = -th;,

(10)
(s, 4 | = p2m (B, - ﬁz +5 hw)

So A/; and A;: are indeed ladder operators. The

ground state wavefunction can be obtained from solving

< |4 |¢(ﬁ)> (11)

whose solution is given by

(x

0(6)) =P (0

= \/F (Bzrrllhw +Filiﬁ )F(ﬁznllhw _f% )

(12)

The energy £#)of the ground state can be
obtained from <x|ﬁﬁ |1/;0(B)> = EP9P) (x). By using the
second equality of eq. (10), it can be seen that energies

for the excited states |l/’75ﬁ)) = (A;;)n |¢O(B)), are given by

1
E,(f;) = (n + E) hw. (13)

The wavefunctions obtained are yet to be normalized.
For this, it is convenient to make use of dimensionless

quantities. More explicitly, we define

mhe . (14)
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The outcome is that the normalized wavefunc-
tions are given by
~(B)(DR)
<pr(1 ) »

=, F(B2+ip~y)r2—if~y)  (15)
~ 21— =2/B* nl Bt (n + 2/82)

where péﬁ ) () satisfies the recurrence relation

2
pffi?(yﬂﬁ (n+[; )pﬂ(y) (16)

B

> ypfl UeH
o By — (B) oy —

for with n = 2,3,4,-, withpy” “(y) =1, p; "(y) = y.

The wavefunctions (15) provide a good testing ground for

the perturbative analyses to be carried out in this paper,

where for NESHO we will expand the Hamiltonian in small

B In the next section, we will write down the perturbation

theory in the form which will be suitable for the study of

multi-parameter Hamiltonians.

Extensions of time-independent non-degener-
ate perturbation theory

Standard Rayleigh-Schrédinger perturbation
theory

In the standard Rayleigh-Schrédinger perturba-

tion theory, one considers a Hamiltonian:
H=H0°+H, (17)

which is a perturbed Hamiltonian of HO with small
ik Suppose that all eigenstates and corresponding
energy eigenvalues for H° are known. One introduces a

parameter A and rewrite the perturbed Hamiltonian as
H= H'+210" (18)

The idea is to treat A as a small parameter,
perturbatively compute eigenstates and eigenenergies up
to as many orders as required, and finally set A = 1 at

the end of the calculation.
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Let {I¥)} and {EX} be eigenstates and eigen-
energies, respectively, for A% Let us focus on the case
where energies are non-degenerate, and n is a discrete
label of the states. Then, time-independent Schrédinger’s

equation is
HOlyR) = EQyy). (19)

Similarly, let {{¥x)} and {En} be eigenstates and

eigenenergies, respectively, for H. Then
(H +AHD[n) = En[thy)- (20)
Applying (1/)31| on this equation gives
Ep(m ) + M0 H ) = E (P ¥n). (21)

There is a freedom to fix the normalization for
[¥n)- So let us define

|1 ) 22)

o) = 0y

and consistently,

0
<w|;p|?/j°> = v “

Therefore, (@0 |@,) = 1. With these definitions,

log) =

eq. (21) becomes
Ep (o |on) + Moh |[H 0p) = Enohlen).  (24)

It is convenient to separately consider the cases

m = nand M # 7N, giving
E, = E) + Xop|H' |@y), (25)
and

Ep{pmlon) + Mop |H [ @n) = Enlonlen),  (26)

where m # n. By expanding these two equations

using
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o) = D 20y, Ba= ) MEL, @)
u=0 u=0

and comparing coefficients of A, one obtains, for
,Ll = 112I3) Yy

o -1
Ef =(o|H 9} ), (28)
N lof)
|(pn) - EO _EO
m#En M n
u—1
- o -1
X ZE%W%IQDL‘ "y = (o H oh ) ), (29)
v=1

which should be solved recursively, starting from

lower values of u.

Perturbation theory for multi-parameter
Hamiltonian

Instead of the Hamiltonian in the form of eq. (18),
let us now turn to the case where the Hamiltonian has r

parameters and is given as

ﬁ = Z Z Z A’fllgz .../‘li;rﬁyl,#z,...”ur‘ (30)

H1=0p2=0 puy=0

where F90-0 is the unperturbed Hamiltonian
with known eigenenergies E,?’O""'O and eigenstates
") Hamiltonians to be analyzed later have this form
with ¥ = 1,2. So it is useful to give the analysis for
perturbation theory on this kind of Hamiltonian with
general 7. Before proceeding, let us make use of multi-index

notation fi = (uq, iy, -+, iy ), Whose properties are

Al = (u +pg + -+ pe),
LEV= (U 2v,pp £vo, 1 £ 0),
ﬁ>1—/)C>H.l>VL, 1< lST‘,

o A= ATA5E AT

So the Hamiltonian can be rewritten as

—

H= ) A¢RE (31)

g

Let En and [¥n) be eigenenergies and eigen-

states for H We obtain
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= (09|H|@y), (32)

and

(B8 - £ ){of

where m # n, and

wn) + («pEIAﬁﬁﬁlq)n) =0 (33)

w>

ol

1) 0 g
lp,) = ——, |¢3> = |¢3> (34)
(w8}
By Expanding eigenenergies and scaled eigen-
states as
= Z AﬁEﬁf , |(pn) = Z Aﬁl‘/’#); (35)
=0 =0

the equations (32)-(33) imply, for fi #0,

B = ) (@UA0f),

0<VSﬁ; L (36)
n = = .
m#=n 0<vV<y E,? o E’%

These two equations are solved recursively starting
from smaller values of |ﬁ|' and stops when the desired
precision is achieved.

The main analyses in this paper make use of
one-parameter and two-parameter Hamiltonians. So the
cases r = 1,2 will be useful for later presentations in this
paper. Let us thus write down the results for these cases

for convenience.

One-parameter Hamiltonian
Let us consider a Hamiltonian with one param-

eter A:

A= Z AAE, (37)
u=0

where H? is the Hamiltonian whose normalized
eigenstates |<P1?) and eigenenergies Er? are known. The

energies and eigenstates of H are given by

J Sci Technol MSU

[ee)

o) = ) Ml0k),  (@9)

u=0

- ZA"E,’f,
u=0

whose coefficients for each order of A can be

obtained from the recurrence relations

(39)

Two-parameter Hamiltonian

Let us now turn to the Hamiltonian

pe3 S,
pu=0v=0

where 41, and 42 are parameters. In this case,

the unperturbed Hamiltonian is written as H%° with known
) - EO0 ) ) 0,0

eigenenergies £n » and normalized eigenstates lon™).

The eigenenergies and eigenstates of H are given by
A2 ERY,

)

ii
lon) =ZZ

where, for (1, v) # (0,0),
u v

ERY = z 2 (@’
p=0 n=0
(p.m) #(0,0)

[HP "), (42)

|<p)

((pOO Hpr]_Eﬂﬂ (pl‘- e 77)
_Z Z Z | F00 _ Eolo |om”). (43)

p=0 1n=0 m#n
(p,n) #(0,0)

Energy spectrum of NEAHO from perturbation
theory

As a direct extension to NESHO, let us turn to
NEAHO. That is, we consider a Hamiltonian whose
Hamilton’s equations of its classical version agree with

Newton’s equation for a system with Hamiltonian
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| 1
H? =5—m+5mw2x2 +Zax4. (44)
From eq. (2), we see that the classical version

of the required Hamiltonian is given by

cosh fip
H, = 5m
1

x\/l +2m(§ma)2x2 +%ax4),82 -

B2m’

(45)

Let us canonically quantize this Hamiltonian by
choosing the operator ordering in the spirit of Degasperis

and Ruijsenaars’. This gives

—ihBa,

Com—C_ + (i > —0)

(x|HA|¢) = 2[32m

(46)

1 1
—Bz—m-l'zh(u ¢(x),

1
where C+ = (1 + iE\/ZmV(X))Z' dx acts on

everything on its right, and

V(x) = 1ma)zx2 + lax‘*.
2 4 (47)

Before presenting the analysis of NEAHO, it is
a good idea to revisit NESHO, but using perturbation
theory this time. This is in order to make sure that we

have the technique under control.

The analysis of NESHO using perturbation theory
The Hamiltonian for NESHO, acting on a wave-
function ¢(X), is given by

a—infoy

B Sprm B+ =D

(x|f|¢) =
(48)

1 1
- m'i‘ih(u (P(x)

Let us define the Y — space representation
accordingly by using eq. (14) and denote wavefunctions
in Y — space representation as hatted notations, whereas

those in x — space as unhatted ones. For example,
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P (x) = (x|P), (49)
whereas
P = (y9). (50)

The hatted wavefunctions should not be
confused with the operators. By using dimensionless

quantities, the equation (48) reads

_ e By _
By,———B_+ (i »-i
g B D

(v|H|gp) =
1 1 ~
NE +5 hwop(y),
(51)

1 1
where Bi=(1+ify)’, B =(1-iBy)-
Expanding gives H as given in eq. (37), where 1= B2

Eigenstates for standard SHO Hamiltonian are given by

) = P2 My L 22
RO =7 (Gn) Fhoe (52)
where
an
T,(y) = (—1)"e¥ —e™
Y dym (53)

are the (physicists’) Hermite polynomials. The

eigenstates PR () satisfy

[or(a)

These setups allow us to compute the eigenen-

N w

(200)) 20 = b1 -

ergies and eigenstates. To demonstrate the calculation
steps, let us show intermediate results up to order A2.

Firsl consider
{y[H[93)

1 .
ho =- 12 (M4 Pn-4(y)

1

-z n—2)y (), ¢ ()
1

—gn n+2), @3,
1

V0 PRu0),

(55)



96 Sujiphat Janaun et al.

x!

where (X); = G is the Pochhammer symbol.

x—k)!
So

0 [f1],,0
om|H @ 1
% = —E\/ (Tl)4 5m,n—4
1
- g (Tl - 2)\/ (n)zam,n—Z

(56)
1
- gn\j (Tl + 2)2 5m,n+2
1
- E\/ (Tl + 4)4— 5m,n+4'
So by using (39), we obtain
Ey =0. (57)

Next, by using eq.(56) for m # n, we obtain

P) =~ 75 V9840
= 2@, 98- )
4@+ 2); 920) 9
+%\/(n+74)4¢2+4(y)-

To rewrite this more compactly, let us define

<"+—k+2|_k|>"" (59)
o — A0
Pnsk V) = Pnpr(¥) 2 :

and the bracket

[f@n 0], = fFE) )
tfn =P (). (60)
So eq. (58) is rewritten as

Ar(y) =232 +n@l M. (61)

W]

Let us now turn to the second order. Using eq.

(56), we obtain

. hw
(PRl |oh) = == (107° = 3n% + 11n + 3), (62)
and
. hw
(@%|A?|9l) = 5(10713 —3n%+11n +3). (63)

Inserting eq. (62) and eq. (63) into eq. (39) gives
E7 = (@R |H o) + (oR | H?|0l) (64)
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Next, using eq. (39) we obtain

Pr)
1 _ n+2 _
= [ﬁ P8(y) + Tq’g%()’)
nn+2) _
— P ()

_(n+ D(n? +2n+12) _

(65)
i Prr2 () L

3 _ 1 -
- [ﬁ Prre () + 6—? (14n + 15)@5 14 (y)
4ot DL 0)|
We have followed the steps outlined above up

to order A°. The results are

1
E, = ho (n + E) + 005, (66)
5
20) = D NMBLG) +00S),  (67)
u=0

where P2 (%), @1 (¥), and = () are respectively
as given in eq. (52), (58), and (65) while P (), x (¥),
and Pn(Y) are given by long expressions which we
choose not to write down as they do not give much
insights. In fact, it is more important to verify or justify
that the perturbative method we used is working as
expected. For this, we will present the check our
perturbative expansion against the exact result’.

As discussed earlier, the energy spectrum for
NESHO Hamiltonian is, after a suitable shift using a
constant, as given by eq. (13). So it can immediately be
seen that our perturbative result in eq. (66) agrees with
that of Degasperis and Ruijsenaars’ for any n and up to
order 2%, or in terms of B, order B'°-

Next, let us check the eigenstates. In fact, eq.
(67) is not yet suitable to compare with Degasperis and
Ruijsenaars’ as it needs to be normalized in the same

way. More explicitly, we compute
P (¥)

@n(}’) = =
,/f_m dy| @, )|?

which is Taylor expanded around 4 = 0 up to

+0(2%), (68)

order A°. We compare this with the exact result of
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Degasperis and Ruijsenaars’. This is as given by eq. (18).
Let us relabel the wavefunctions @1513)(012)01) as 3PP (y)
in order to make the notations less cluttered. Then make
an expansion around 8 = 0 up to order at least (10, and
then write in terms of 4 = B%. The expansion can be
carried out by making use of Stirling’s series, which is the

asymptotic expansion for large of

T(N + 1)~ \/_( ) iN—" (69)
with" k=0
S b
(-1
Z (l) 2k +1L+])' (70)

% Z (-1)! (l) (j — D2k+i+

=0

and 2 = 1. For example, by using the above
prescriptions, the expansion of the ground state wavefunction

reads

'S

e
"™ ) =

3 —12y? + 4y*
x@#”“),

1]
S

(71)
48

where ... are higher orders in A which can be
computed to any desired order. This result is checked
against ours in eq. (68) for n = 0, and is shown to agree

to order A°. In fact, we have explicitly verified the

expression
. =30 (1) +00) (72)
for n=20,1,2,---,8. Higher values of n can also be

checked, and we expect that the expression remains true
for these cases. Although we do not have an explicit proof
that this is indeed valid for any given n the result should
be sufficient to convince that perturbative calculation is
working as expected. Let us then proceed to
perturbatively analyze Newton-equivalent Hamiltonians

for anharmonic oscillator.
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The analysis of NEAHO using perturbation
theory
NEAHO Hamiltonian, acting on a wavefunction

@(x), is given by

_ —ihBd,

(x|Ha|p) = | C+=5— 257 C_+({--i)
(73)
1
- ,82_ + = hw ¢ (x),
Note that in the limit of 8 = 0, the equation (73)
becomes
(x|Hy| ¢)
A2
wh
P e+ axt + 2

h(mw? + ax?)

J2m(2mw? + ax?)

) ¢ (x),

which is differed from the standard Hamiltonian
of anharmonic oscillator with potential in eq. (47). In fact,
the extra terms are artefacts from the choice of operator
ordering, which is considered a quantum effect. If one
sets 1 = 0, thus turning off the quantum effect, then the
Hamiltonian (81) is reduced to the expected classical
Hamiltonian for anharmonic oscillator.

By using dimensionless quantities, the equation

(74) becomes

_ e~iBay
(x|Hy| ) = <D+WD_ + (- —i)>
11\ . (75)
TR +3 hwop(y),

where D, = (1 + Lﬁ\/Tay) , a.

Zme3

By expanding in & and B, the equation (75) takes the form

Gy =D > MR o) (76)
u=0 v=0

where Ay = @, 1, = %, and

OIS le) _ (v? 33\ - -
P = (5 -5 ) oo v
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50,1
DI _ L gy 1302 + 0
hw 4 8)
- 12y0, (
_ 3(y2 — 1)2)(13()’):
WA (ﬁ 3 )
(v o
(y Hy L1 (l’) 1
|7 ;w | = S (r*(5-207) - 8y°, (80)

+3y2(0% - 3) + 6y,
-2y°+2)¢(),

etc.

By using eq. (41)-(43), with E*? and |pp?)
being eigenenergies and eigenstates for the standard
simple harmonic oscillator Hamiltonian, we obtain the

eigenenergies for NEAHO Hamiltonian (75) as

E 1
T =nt o+ Ea+ Eat +0(@), (81)
where
3n 1, - -
1
En == +7n° B2 +0(B°),

17 3n? -
E® = —3; (n+ 2n%) — - (17 + 25n°)

n3 - _
—5(17 +9n2)B* + 0(F°),

and obtain the wavefunctions for NEAHO Hamiltonian

(75) as

P () = i i y)ar g (82)

with
3
(5 #2°0) = 920, (83)
mw 3
MWN4 ~0,1
( 3 ) Pn”(¥) (64)

1
= 513040 + 1P O],
maw - 1
(= . ) P2 0) = = |30+ @5)
+7 (4n +3)P5 42 ()’)]_x

etc.
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3
MWNE _q 1 _ B
( h) ) = —256(11n 2n3
+61n +2n+ Do (y)

1
+ [—_¢n+8()’) (Zn +5)@n+6(¥)
4n% + 11n + 3
- P (¥) (86)

2n3 4+ 7n% + 31n + 30
+ 64 n+2(y)

9 _ n+1_
+ [E(Pr?%(}’) +T€0n+4(J/)
6n +14n+9

0]

Note that the trend for the eigenenergies in eq.
(81) suggests that the terms of the form for Bllk for | > 2k
do not appear. This result is non-trivial, and it is worth
investigating further whether this pattern persists through
higher orders. If this is the case, it would be interesting

to investigate even further to look for reasons behind this.

Perturbative NEAHO Hamiltonian from
intertwining relations

NEAHO Hamiltonian can be put in the context of discrete
quantum mechanics'®"®. Let us rename Ha from eq. (75)
as H[O] In the context of discrete quantum mechanics,
but using our notation, eq. (75) can be written as

7101
B _go Lo gofgo il e
2‘

igo
A =i(e_Ty wiok(y)
ifa,
—e 2 /W[O](y) ,

1+ iﬁﬂyz + ay* (89)
232 '

and in this subsection we have chosen not to distinguish

where

(88)

wlly) =

operators from their ¥ — space representations (this is in

the same spirit as writing p = —ihdy as a shorthand for
(x|p = —ihd,(x]). The Hamiltonian is put in the form

1976 " which

which allows the use of intertwining relations
generate iso-spectral Hamiltonians from appropriate
change of operator ordering. The first one from the

family is
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1]
By _ 100 glort % (90)

hw

and the constant shift —hw/2 is introduced in
order that ﬁf] reduces, in the limit § - 0, A — 0, to
standard classical AHO Hamiltonian (44). In order to find

the next Hamiltonian, one first computes

_ B\ o (4B

PO —iB)
[1] '
®y- ) (91)

where (P([)l](y) is the ground state of Hamiltonian
(90). We expect that ‘P([)l](Y) do not have a closed form.
So let us compute this expression perturbatively in
A = @ 2, = B2 keeping orders A* = 2{125% with i =
(11, 42) < (2,2), and such that the unperturbed Hamilto-
nian is taken to be the standard SHO. Instead of showing

the perturbative result for w([)ll(y), let us directly present

wil ty [EY PN
) = 2 2ﬁ+2ﬁ2 W(Q(Y)“

(2) (a2 + o(aF#@),

(92)

where

3iy iy3\1 3 3 9iyf 5p2
1] y, 3 3y 9iyf 5B
O = ( )ﬁ+8 8 " 16 32

wiil

()_(_51iy_11iy _£>1_51 5y*
QWY =\ "3 " 16

7 et 32

! i(321y + 198y3)3 + 3_%\ g
19204 yIB 4 64 p
153 10384

“256 P 5
In order to obtain wh (3’) we seti = —iin the
expression of wil (¥)- Note that we choose the choice
£ < (2,2)of truncation simply to give a demonstration of
the procedure. The extension to higher order can easily
be obtained also by using eq. (4?) (43). With wil o)

obtained, one can rewrite as HA

A L Ea (93)
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where

. 1 m——
Al = i<e—T wil(y)
ipa,
—e Z /W[l](y) )

and Eatis as given in eq. (81). Note that since W was
obtained for i< (2,2), the Hamiltonian (93) has to be

(94)

truncated correspondingly. One can then check that, up
to this order, it indeed agrees with its alternative form
(90).

One can then obtain another alternative ordering
of NEAHO Hamiltonian:

ho ho (95)

Then one perturbatively computes the ground

state wave function (p([)z] (y), and

wlly) = |whil <1 — g) w1l <1 _ ﬁ)

(y if)
96
](y) (96)
1 ly 1 [2] -
=E 2E+2—'32+W(1)(y)04
(2) 2y a2 +0(AFFC2),
where
3iy iy3\1 9 3 15iyf
w2 y iy __L y
WayO) = ( >[3+8 B
Then is alternatively given as
732
g
fiey = (L51y 11y iy*\1 255
@ 8 8 16 )3 64
33y S5y* 1 .
32 +1—6—@L(2361y+630y ),3~
207 37y*\ ., 459 ., 199p*
——1iyp’> — .
32 32 64 64
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Then ﬁfgz] is alternatively given as

ijl2] (97)
Hy st A Ey
A _ gt gkl 222 -
hw hw

where

R ia,
Al2] = i(e_ 2 |[Wil(y)
(98)

ifo,
—e 2z /W[Z](y) ,

Next, one can obtain another alternative ordering:

NE)
fa _ goget Bz _ g
hw hw (99)

This should be sufficient to demonstrate the
procedure. One may then wish to keep working to obtain
also 1’-1‘1‘[14], 1’-1‘/&5], [’-[‘/Eﬂ’ etc. Let us now present the energy
spectrum that we obtain. For each Hamiltonian, the
lowest energy level is labelled by index and subsequent
levels are by subsequent numbers. Let us label energy
for as ﬁlgs] as Er[zs]- Then

0
EX = E,, (100)

where Ean is as given in eq.(81). We obtain the

relationship
BN = 6%, — o, B =~ ho,

(101)
Er[l3] = Er[zzj1 — hw,

which is so far consistent with the general

consideration'®"®

. We expect that this pattern should persist.
Discussion and Conclusion

In this paper, we analyzed NEAHO whose classical
potential is of the form eq. (47). We started by making
sure that the perturbation method we introduced gives
the expected result. This is by comparing the known
analysis of NESHO. Then we proceeded by analyzing the
NEAHO Hamiltonian (73) by giving a perturbative result
of eigenenergies (81) and wavefunctions (82)-(86). We
went further by analyzing other orderings of the NEAHO
Hamiltonian. These orderings are obtained'®'® by the

application of the iterative procedure. We found, as should

J Sci Technol MSU

be expected, that the eigenenergies for Hamiltonians in
the sequence ﬁ[o]. ﬁ[ll’ ﬁ[Z]’ *** are related.

It is important to note that although the iterative
procedure was already given, obtaining the Hamiltonians
in the closed form is not guaranteed. This is because one
needs to know the ground state wavefunctions, which do
not have a closed form. So perturbation theory provides
a way to proceed the analysis. Based on the analysis of
the Hamiltonians in our demonstration, the results suggest
that the perturbative analysis that we made use is
working correctly. So as a future work, one may wish to
proceed by using the perturbative analysis to analyze
more complicated NEAHO Hamiltonians, for example

those whose potentials are of the form

1 o 22,1 4.1 &
V(x)=§mw X +Za1x +ga2x (102)
o
ek

Eigenenergies and wavefunctions for NEAHO
corresponding to this potential can be obtained by using

multi-parameter perturbation theory, i.e. by iteratively

applying eq. (36).
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