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บทคัดย่อ
ฮามิลโทเนยีนแบบเทยีบเท่านวิตนัคอืฮามลิโทเนยีนทีพ่ลวตัคลาสสคิตรงกบัของฮามลิโทเนยีนแบบมาตรฐาน ซึง่ในงานวจิยันีไ้ด้

หาค่าสเปกตรัมและฟังก์ชันคลื่นของระบบเชิงควอนตัมในแบบเทียบเท่านิวตันส�ำหรับศักย์แอนฮาร์มอนิกออสซิลเลเตอร์ก�ำลังสี่ 

ในงานวจิัยได้แสดงผลตวัอย่างของการรบกวนในอนัดบัต�ำ่ๆ ซึ่งในอันดบัทีสู่งขึน้กส็ามารถท�ำได้โดยการท�ำซ�้ำ ผลการรบกวนใน

ลิมิตที่ความเป็นแอนฮาร์มอนิกออสซิลเลเตอร์เป็นศูนย์นั้นสอดคล้องกับผลของฮาร์มอนิกออสซิลเลเตอร์แบบเทียบเท่านิวตันที่

วิเคราะห์โดย Degasperis และ Ruijsenaars ในปี 2001 นอกจากนี้ในงานวิจัยยังได้ศึกษาฮามิลโทเนียนของแอนฮาร์มอนิกออส

ซิลเลเตอร์แบบเทียบเท่านิวตันซ่ึงมีการจัดล�ำดับตัวด�ำเนินการในรูปแบบอื่นๆ และแสดงผลการรบกวนซึ่งสอดคล้องกับความ

สัมพันธ์เชื่อมโยง ซึ่งอยู่ในกรอบความคิดที่ก�ำหนดให้โดย Sasaki และ Odake ในปี 2009 และ 2011 ที่กล่าวถึงความสัมพันธ์

ของระดับชั้นพลังงานส�ำหรับฮามิลโทเนียนที่มีการจัดล�ำดับตัวด�ำเนินการในแบบต่างๆ

ค�ำส�ำคญั: ทฤษฎกีารรบกวน แอนฮาร์มอนกิออสซลิเลเตอร์ สเปกตรมัและฟังก์ชันคล่ืน ฮามิลโทเนยีนแบบเทยีบเท่านวิตนั ความ

สัมพันธ์เชื่อมโยง

Abstract
Newton-equivalent Hamiltonians are Hamiltonians whose classical dynamics agree with those from the standard 

Hamiltonian. In this work, we perturbatively work out energy spectra and wavefunctions of quantum mechanical 

Newton-equivalent Hamiltonians with quartic-anharmonicity anharmonic oscillator potentials. We show example results 

for low order perturbations. Higher orders can also be obtained using further iterations. Our perturbative results in  

the limit of zero anharmonicity are consistent with the exact results of a Newton-equivalent simple harmonic oscillator 

analyzed by Degasperis and Ruijsenaars in 2001. We also study other orderings of the Newton-equivalent  

anharmonic oscillator Hamiltonians and show that our perturbative results are consistent with the intertwining relations, 

which are in the framework given by Sasaki and Odake in 2009 and in 2011, relating eigenenergies of different  

orderings of the Hamiltonians.

Keywords: Perturbation theory, anharmonic oscillator, energy spectra and wavefunctions, Newton-equivalent  

Hamiltonian, intertwining relations
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Introduction
In Hamiltonian analysis, the dynamics of a classical point 

particle of mass  moving in one dimension subject to 

an external potential  is usually described by starting 

from the Hamiltonian

	 	 (1)

	 One type of alternative Hamiltonian giving the 

same dynamics was obtained by Degasperis and  

Ruijsenaars1. Such Hamiltonians would be called Newton-

equivalent Hamiltonians. The idea of the construction was 

to look for the Hamiltonian as a product of a function of 

 and a function of .This results in a one-parameter 

family of Hamiltonians:

	 	(2)

	 where the parameter  was interpreted as the 

speed of light. Since  is a parameter, different  corre-

sponds to different Hamiltonians, and hence describes 

different systems. In the limit , the Hamiltonian  

reduce to  : 

	 	 (3)

	 Note that the interpretation that  is the speed 

of light is given only by Degasperis and Ruijsenaars1. 

However, throughout our work, we are not going to follow 

this interpretation. This is because  can take any value, 

and is not just limited to . By “any values” 

we mean that  can be anything from  

to For the Hamiltonians in eq. (2), different  corresponds 

to different Hamiltonians. For example, the Hamiltonian 

 with  is differed from  with 

 and both of them are differed from  with 

 etc.

	 Another reason we are not going to view as the 

speed of light is that the theories that we discuss in this 

paper are non-relativistic. All the Hamiltonians in eq. (2) 

with any value of give rise, via Hamilton’s equation, to 

the usual Newton’s equation, which is exactly the same 

as that obtained from the Hamiltonian  in eq. (1). Note 

that Newton’s equation is non-relativistic, and that the 

parameter  does not appear anywhere. So the Hamilto-

nians in eq. (2) are not relativistic Hamiltonians.

	 Based on these reasons, we have made clear 

that we do not interpret  as a speed of light as in  

Degasperis and Ruijsenaars1. So it should not raise any 

concern when  takes values different from  

For us, we only view  as a parameter which happens to 

have the same symbol as speed of light and happens to 

have the unit  Having commented on this point, let 

us now proceed.

	 The system for eq. (2) with a simple harmonic 

oscillator (SHO) potential as well as its quantization was 

investigated by Degasperis and Ruijsenaars1. Let us call 

this system a Newton-equivalent simple harmonic  

oscillator (NESHO). The complete energy spectra and 

wavefunctions were studied and determined. The result 

suggests that although classically, the whole family of 

Newton-equivalent Hamiltonitans describe the same  

dynamics, the quantum version does not need to agree. 

This observation is further confirmed by an investigation 

of Calogero and Degasperis2.   

	 There are several paths to generalize or give 

alternative viewpoints. Let us spell out some of them. The 

first one3-4 discussed quantization of Newton-equivalent 

Hamiltonian which is also essentially of the form in eq. 

(2), but with an alternative operator ordering. In addition, 

Newton-equivalent Hamiltonian whose classical version 

takes the form4, after an appropriate rescaling,

	 (4)

	 was investigated. In contrast to eq. (2), the  

dependencies on  and  are not separated. This  

Hamiltonian also connects to the standard one in the 

limit , in the same way as that of eq. (3). The 

quantization of the Hamiltonian in eq. (4) with simple 

harmonic potential was discussed. The energy spectra 

and wavefunctions were obtained.
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 	 For the second path1, NESHO is in fact linked 

to Wigner quantum mechanics5, which is considered a 

noncanonical quantization. A generalization of Degasperis 

and Ruijsenaars1 in this framework is given in Blasiak, 

Horzela and Kapuscik6.

	  In the third path7-10, the idea is that quantum 

Hamiltonian obtained in Degasperis and Ruijsenaars1 can 

be put in the form of discrete quantum mechanics. The 

analysis in this framework gives interesting consequences. 

As an example, this gives intertwining relations which 

allows one to obtain energy spectra of alternative  

orderings of some given Hamiltonians. Another example 

is that new orthogonal polynomials have to be used in 

order to write down wavefunctions. 

	 In the fourth path11-13, procedures to generate 

classes of Newton-equivalent Hamiltonians were  

developed and example Hamiltonians were generated. 

This path is developed quite recently, and so far only the 

classical aspects are discussed. 

	 In this paper, we focus on a development which 

is mostly related to the third path. Although within the 

third path the procedure was already given in order to 

generate energy spectra and wavefunctions of some 

given classes of Hamiltonians, there is no guarantee that 

these can be given in closed forms. For example, even 

by using the standard Hamiltonian (the quantization of 

eq. (1)), quantum anharmonic oscillator needed to be 

solved using perturbation theory. So it is natural to expect 

that its Newton-equivalent version, called Newton- 

equivalent anharmonic oscillator (NEAHO), would also 

need assistances from perturbation theory. It is therefore 

our goal to study this. In fact, the only NEAHO that we 

are going to study in this paper are the ones with quartic 

anharmonicity. Nevertheless, we would still call this  

specific system as NEAHO. 

     

Review of NESHO and its energy spectrum 
	 Let us first review the construction of classical 

and quantum mechanical NESHO and their analyses1.	

	 By introducing  the Hamiltonian (2) 

becomes, after subtracted by a constant shift 

	 (5)

	 The potential for a simple harmonic oscillator is 

given by

		 (6)

	 In this case, the Hamiltonian reads

	 (7)

	 This is the Hamiltonian for the classical NESHO. 

One recovers the SHO Hamiltonian in the limit  

	 By construction, the Newton’s equation obtained 

from the classical NESHO Hamiltonian coincides with that 

from the standard SHO Hamiltonian. Therefore, the  

dynamics do not depend on the parameter . In this sense, 

the whole family of the Hamiltonian (7) are equivalent. 

	 Let us now turn to the quantum NESHO. The 

canonical quantization, by promoting  of the 

Hamiltonian (7) is ambiguous as  and  no longer  

commute. The resulting Hamiltonians based on different 

ordering of the operators  and  could lead to a different 

theory. However, let us ignore an extensive discussion 

of this problem and simply focus on a particular choice 

of ordering. Consider a choice made by Degasperis and 

Ruijsenaars1 which is based on physical insight of  

Ruijsenaars14. In this case, the NESHO Hamiltonian reads

	 (8)

where 

	 The terms in the second line of eq. (8) were not 

considered by Degasperis and Ruijsenaars1. However, 

we include them in order that the NESHO Hamiltonian 

reduces to the standard quantum mechanical SHO  
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Hamiltonian in the limit  These terms simply  

provide a constant shift to the Hamiltonian, and hence it 

is safe to introduce them. The energy spectrum and 

wavefunctions of NESHO were also obtained by  

Degasperis and Ruijsenaars1. For this, the ladder  

operators were used. The idea is to start from the  

expression of lowering operator in terms of  and , and 

then replace   This gives

	 (9)

	 It satisfies the following commutation relations 

	 (10)

	 So  and  are indeed ladder operators. The 

ground state wavefunction can be obtained from solving

		 (11)

	 whose solution is given by 

	 (12)

	 The energy of the ground state can be  

obtained from  By using the 

second equality of eq. (10), it can be seen that energies 

for the excited states  are given by 

	 (13)

	 The wavefunctions obtained are yet to be normalized. 

For this, it is convenient to make use of dimensionless  

quantities. More explicitly, we define

	 (14)

	 The outcome is that the normalized wavefunc-

tions are given by

	 (15)

	 where  satisfies the recurrence relation

	 (16)

	

for with 

The wavefunctions (15) provide a good testing ground for 

the perturbative analyses to be carried out in this paper, 

where for NESHO we will expand the Hamiltonian in small 

 In the next section, we will write down the perturbation 

theory in the form which will be suitable for the study of 

multi-parameter Hamiltonians.

Extensions of time-independent non-degener-
ate perturbation theory
	 Standard Rayleigh-Schrödinger perturbation 

theory

	 In the standard Rayleigh-Schrödinger perturba-

tion theory, one considers a Hamiltonian:

	 	 (17)

	 which is a perturbed Hamiltonian of  with small  

 Suppose that all eigenstates and corresponding  

energy eigenvalues for  are known. One introduces a 

parameter  and rewrite the perturbed Hamiltonian as

	 	 (18)

	 The idea is to treat  as a small parameter, 

perturbatively compute eigenstates and eigenenergies up 

to as many orders as required, and finally set  at 

the end of the calculation.   
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	 Let  and  be eigenstates and eigen-

energies, respectively, for  Let us focus on the case 

where energies are non-degenerate, and  is a discrete 

label of the states. Then, time-independent Schrödinger’s 

equation is

	 	 (19)

	 Similarly, let  and  be eigenstates and 

eigenenergies, respectively, for  Then

	 	 (20)

	 Applying  on this equation gives

	 (21)

	 There is a freedom to fix the normalization for 

 So let us define

	 	 (22)

	 and consistently,

	 	 (23)

	 Therefore,  With these definitions, 

eq. (21) becomes

	 (24)

	 It is convenient to separately consider the cases 

 and  giving

	 	 (25)

	 and

	 (26)

	 where  By expanding these two equations 

using

	 (27)

	 and comparing coefficients of , one obtains, for 

	 	 (28)

	

	 (29)	

	 which should be solved recursively, starting from 

lower values of .

Perturbation theory for multi-parameter  
Hamiltonian
	 Instead of the Hamiltonian in the form of eq. (18), 

let us now turn to the case where the Hamiltonian has 

parameters and is given as

	 (30)

	 where  is the unperturbed Hamiltonian 

with known eigenenergies  and eigenstates 

 Hamiltonians to be analyzed later have this form 

with  So it is useful to give the analysis for  

perturbation theory on this kind of Hamiltonian with  

general  . Before proceeding, let us make use of multi-index  

notation   whose properties are

	

	 So the Hamiltonian can be rewritten as

	 (31)

	 Let  and  be eigenenergies and eigen-

states for  We obtain
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	 	 (32)

	 and

	 (33)

	 where  and

	 (34)

	 By Expanding eigenenergies and scaled eigen-

states as

	 (35)

	 the equations (32)-(33) imply, for 

	 (36)

	 These two equations are solved recursively starting 

from smaller values of  and stops when the desired 

precision is achieved. 

	 The main analyses in this paper make use of 

one-parameter and two-parameter Hamiltonians. So the 

cases  will be useful for later presentations in this 

paper. Let us thus write down the results for these cases 

for convenience.

One-parameter Hamiltonian
	 Let us consider a Hamiltonian with one param-

eter 

	 	 (37)

	 where  is the Hamiltonian whose normalized 

eigenstates  and eigenenergies  are known. The 

energies and eigenstates of  are given by

	 (38)

	 whose coefficients for each order of  can be 

obtained from the recurrence relations

	 (39)

Two-parameter Hamiltonian 
	 Let us now turn to the Hamiltonian

	 	 (40)

	 where  and  are parameters. In this case, 

the unperturbed Hamiltonian is written as  with known 

eigenenergies  and normalized eigenstates 

The eigenenergies and eigenstates of  are given by

	 (41)

	 (42)

	 (43)

Energy spectrum of NEAHO from perturbation 
theory
	 As a direct extension to NESHO, let us turn to 

NEAHO. That is, we consider a Hamiltonian whose  

Hamilton’s equations of its classical version agree with 

Newton’s equation for a system with Hamiltonian
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	 (44)

	 From eq. (2), we see that the classical version 

of the required Hamiltonian is given by

	 (45)

	 Let us canonically quantize this Hamiltonian by 

choosing the operator ordering in the spirit of Degasperis 

and Ruijsenaars1. This gives

	 (46)

	 where  acts on 

everything on its right, and

	 (47)

	 Before presenting the analysis of NEAHO, it is 

a good idea to revisit NESHO, but using perturbation 

theory this time. This is in order to make sure that we 

have the technique under control.

The analysis of NESHO using perturbation theory

	 The Hamiltonian for NESHO, acting on a wave-

function  is given by

	 (48)

	 Let us define the  space representation  

accordingly by using eq. (14) and denote wavefunctions 

in  space representation as hatted notations, whereas 

those in  space as unhatted ones. For example,

	 	 (49)	

	 whereas

	 	 (50)

	 The hatted wavefunctions should not be  

confused with the operators. By using dimensionless 

quantities, the equation (48) reads

	 (51)

	 w h e r e    

Expanding gives  as given in eq. (37), where   

Eigenstates for standard SHO Hamiltonian are given by

	 (52)

	 where

	 	 (53)

	 are the (physicists’) Hermite polynomials. The 

eigenstates  satisfy

	 (54)

	 These setups allow us to compute the eigenen-

ergies and eigenstates. To demonstrate the calculation 

steps, let us show intermediate results up to order  

First consider

	 (55)
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	 where  is the Pochhammer symbol. 

So

	 (56)

				    (57)

	 Next, by using eq.(56) for   we obtain

	 (58)

	 To rewrite this more compactly, let us define

	 (59)

	 and the bracket

	 (60)

	 So eq. (58) is rewritten as

	 	 (61)

	 Let us now turn to the second order. Using eq. 

(56), we obtain

	 (62)	

	 and

	 (63)

Inserting eq. (62) and eq. (63) into eq. (39) gives

	 (64)

	 Next, using eq. (39) we obtain

	 (65)

	 We have followed the steps outlined above up 

to order  The results are

	 	 (66)

	 	 (67)

	 where  and  are respectively 

as given in eq. (52), (58), and (65) while 

and  are given by long expressions which we 

choose not to write down as they do not give much  

insights. In fact, it is more important to verify or justify 

that the perturbative method we used is working as  

expected. For this, we will present the check our  

perturbative expansion against the exact result1.

	 As discussed earlier, the energy spectrum for 

NESHO Hamiltonian1 is, after a suitable shift using a 

constant, as given by eq. (13). So it can immediately be 

seen that our perturbative result in eq. (66) agrees with 

that of Degasperis and Ruijsenaars1 for any  and up to 

order  or in terms of  order 

	 Next, let us check the eigenstates. In fact, eq. 

(67) is not yet suitable to compare with Degasperis and 

Ruijsenaars1 as it needs to be normalized in the same 

way. More explicitly, we compute

	 	 (68)

	 which is Taylor expanded around  up to 

order  We compare this with the exact result of  



 Perturbative analysis of Newton-equivalent quantum quartic anharmonic oscillators 97Vol 38. No 1, January-February 2019

Degasperis and Ruijsenaars1. This is as given by eq. (18). 

Let us relabel the wavefunctions  as 

in order to make the notations less cluttered. Then make 

an expansion around  up to order at least  and 

then write in terms of  The expansion can be  

carried out by making use of Stirling’s series, which is the 

asymptotic expansion for large of

	 	 (69)

with15

	 (70)

	 and  For example, by using the above 

prescriptions, the expansion of the ground state wavefunction  

reads

	 (71)

	 where  are higher orders in  which can be 

computed to any desired order. This result is checked 

against ours in eq. (68) for  and is shown to agree 

to order  In fact, we have explicitly verified the  

expression

	 	 (72)

for  Higher values of  can also be 

checked, and we expect that the expression remains true 

for these cases. Although we do not have an explicit proof 

that this is indeed valid for any given  the result should 

be sufficient to convince that perturbative calculation is 

working as expected. Let us then proceed to  

perturbatively analyze Newton-equivalent Hamiltonians 

for anharmonic oscillator.

The analysis of NEAHO using perturbation 
theory
	 NEAHO Hamiltonian, acting on a wavefunction 

 is given by

	 (73)

	 Note that in the limit of  the equation (73) 

becomes

	 (74)

	 which is differed from the standard Hamiltonian 

of anharmonic oscillator with potential in eq. (47). In fact, 

the extra terms are artefacts from the choice of operator 

ordering, which is considered a quantum effect. If one 

sets  thus turning off the quantum effect, then the 

Hamiltonian (81) is reduced to the expected classical 

Hamiltonian for anharmonic oscillator.

	 By using dimensionless quantities, the equation 

(74) becomes

	 (75)

where 

By expanding in  and  the equation (75) takes the form

	 (76)

where  and 

	 (77)
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	 (78)

	 	 (79)

	 (80)

etc.

	 By using eq. (41)-(43), with  and   

being eigenenergies and eigenstates for the standard 

simple harmonic oscillator Hamiltonian, we obtain the 

eigenenergies for NEAHO Hamiltonian (75) as

	 (81)	

where

and obtain the wavefunctions for NEAHO Hamiltonian 

(75) as

	 (82)

with 

	 (83)

	 (84)

	 (85)

etc.

	 (86)

	 Note that the trend for the eigenenergies in eq. 

(81) suggests that the terms of the form for 

do not appear. This result is non-trivial, and it is worth 

investigating further whether this pattern persists through 

higher orders. If this is the case, it would be interesting 

to investigate even further to look for reasons behind this.

Perturbative NEAHO Hamiltonian from  
intertwining relations
NEAHO Hamiltonian can be put in the context of discrete 

quantum mechanics10,16. Let us rename  from eq. (75) 

as  In the context of discrete quantum mechanics, 

but using our notation, eq. (75) can be written as

	 	 (87)

where

	 	 (88)

	 	 (89)

and in this subsection we have chosen not to distinguish 

operators from their  space representations (this is in 

the same spirit as writing  as a shorthand for 

 The Hamiltonian is put in the form 

which allows the use of intertwining relations10,16, which 

generate iso-spectral Hamiltonians from appropriate 

change of operator ordering. The first one from the  

family is
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	 (90)

	 and the constant shift  is introduced in 

order that  reduces, in the limit  to 

standard classical AHO Hamiltonian (44). In order to find 

the next Hamiltonian, one first computes

	 (91)

	 where  is the ground state of Hamiltonian 

(90). We expect that  do not have a closed form. 

So let us compute this expression perturbatively in 

  keeping orders  with 

 and such that the unperturbed Hamilto-

nian is taken to be the standard SHO. Instead of showing 

the perturbative result for  let us directly present

	 (92)

where

	

	 In order to obtain  we set  in the 

expression of  Note that we choose the choice 

of truncation simply to give a demonstration of 

the procedure. The extension to higher order can easily 

be obtained also by using eq. (42)-(43). With 

obtained, one can rewrite as 

	 	 (93)

where 

	 (94)

and  is as given in eq. (81). Note that since was 

obtained for  the Hamiltonian (93) has to be 

truncated correspondingly. One can then check that, up 

to this order, it indeed agrees with its alternative form 

(90).

	 One can then obtain another alternative ordering 

of NEAHO Hamiltonian:

	 	 (95)

	

	 Then one perturbatively computes the ground 

state wave function  and

	(96)

where

	 Then is alternatively given as 
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	 (97)

where

	 (98)

Next, one can obtain another alternative ordering:

	 (99)

	  This should be sufficient to demonstrate the 

procedure. One may then wish to keep working to obtain 

also  etc. Let us now present the energy 

spectrum that we obtain. For each Hamiltonian, the  

lowest energy level is labelled by index and subsequent 

levels are by subsequent numbers. Let us label energy 

for as  Then

	 	 (100)

	 where  is as given in eq.(81). We obtain the 

relationship

	(101)

	

	 which is so far consistent with the general  

consideration10,16. We expect that this pattern should persist.

Discussion and Conclusion
In this paper, we analyzed NEAHO whose classical  

potential is of the form eq. (47). We started by making 

sure that the perturbation method we introduced gives 

the expected result. This is by comparing the known 

analysis of NESHO. Then we proceeded by analyzing the 

NEAHO Hamiltonian (73) by giving a perturbative result 

of eigenenergies (81) and wavefunctions (82)-(86). We 

went further by analyzing other orderings of the NEAHO 

Hamiltonian. These orderings are obtained10,16 by the  

application of the iterative procedure. We found, as should 

be expected, that the eigenenergies for Hamiltonians in 

the sequence   are related. 

	 It is important to note that although the iterative 

procedure was already given, obtaining the Hamiltonians 

in the closed form is not guaranteed. This is because one 

needs to know the ground state wavefunctions, which do 

not have a closed form. So perturbation theory provides 

a way to proceed the analysis. Based on the analysis of 

the Hamiltonians in our demonstration, the results suggest 

that the perturbative analysis that we made use is  

working correctly. So as a future work, one may wish to 

proceed by using the perturbative analysis to analyze 

more complicated NEAHO Hamiltonians, for example 

those whose potentials are of the form

	 (102)

	 Eigenenergies and wavefunctions for NEAHO 

corresponding to this potential can be obtained by using 

multi-parameter perturbation theory, i.e. by iteratively  

applying eq. (36).
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