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บทคัดย่อ 
บทความฉบับน้ีมีจุดประสงค์เพื่อน�าเสนอการค�านวณระดับพลังงานของระบบอนุภาคคู่ในศักย์เชิงควอนตัมแบบ (12-6) เลน

นาร์ด-โจนส์ โดยใช้ระเบยีบวธิคี�านวณเชงิตวัเลขแบบผลต่างจ�ากดั ในแบบจ�าลองทางคณติศาสตร์ได้ใช้การประมาณค่าความผิด

พลาดอันดับสอง เพื่อสร้างเมตริกซ์ของสัมประสิทธ์ิตัวด�าเนินการแฮมิลโตเนียน แล้วค�านวณหาค่าเจาะจงหรือพลังงานสถานะ 

และฟังก์ชันคลื่นของแต่ละสถานะ ของศักย์แบบเลนนาร์ด-โจนส์ ซึ่งเป็นอันตรกิริยาของการผลักและการดูดกันของระบบสอง

อนุภาค การค�านวณหาระดับพลังงานที่ได้นี้คือพลังงานของอนุภาคที่อยู่ในสถานะกักกัน จากการค�านวณระดับพลังงานด้วยวิธี

เชิงตัวเลขนี้ ท�าให้ได้พารามิเตอร์ของพลังงานที่สถานะต่างๆ และได้แสดงกราฟของการกระจายของความน่าจะเป็นในแนวรัศมี

มาด้วย

ค�าส�าคัญ: ศักย์แบบเลนนาร์ด-โจนส์ ระเบียบวิธีเชิงตัวเลขแบบผลต่างจ�ากัด กลสาสตร์ควอนตัมเชิงแมทริกซ ์ระดับพลังงานใน

สถานะถูกกักกัน

Abstract
This paper aims to present a calculation of energy levels of (12-6) Lennard-Jones potential of the quantum mechanical 

system of the bound state problem by using finite difference methods (FDMs) with a truncation error  for  

constructing a proper Hamiltonian matrix and calculating the eigenvalues  and eigenvectors  from this matrix. 

The interaction potential between two-particle system in the atom is in the kind of attraction and repulsion. As a result, 

we represent the energy in each level through a unitless energy parameter  and the radial probability distribution 

of energy levels is also presented. Moreover, we also illustrate graphs of radial probability distribution with respect to 

the distance in each energy level.

Keywords: Lennard-Jones Potential, Finite Difference Method, Matrix Quantum Mechanics, Energy Levels in Bound 

State 



Maruekhen Chomphet et al. J Sci Technol MSU364

Introduction
The interaction at quantum scale between two atoms is 

often described by the Lennard-Jones potential1-3: 

  (1)

 where  is the Plank’s  

constant divided by  stands for the reduced mass 

of two atoms and  is the equilibrium distance or the 

classical turning point of atoms which is the minima of 

interaction potential. The  is the intensity parameter of 

this potential, as in the bound state energies are defined 

the intensity range of  The term that stands for 

the attractive part is  and the repulsive term is 

represented by . The exponents of  and   

represent the short and long range parts of the potential.

 These are divided into three different values, i.e., 

with  for the case of interaction between atom and 

ion collision5-6, and  for the two neutral atoms (the 

usual Lennard-Jones potential) or a familiar van der Waals 

potential7, and  for two retarded atoms potential as 

known as the Casimir-Polder potential between two  

neutral polarizable atoms8. 

 To explain the interaction between two-atom 

problems in the quantum point of view, for the simple 

case, we deal with the Schrödinger equation which is the 

equation of motion for the quantum system. It is difficult 

to solve the exact solution from the equation of motion 

which is always expressed by a second-order differential 

equation. Many problems reduce to the coefficients of a 

polynomial or to the Frobenius method9-11. We can 

evaluate an analytical solution as well as the numerical 

method to solve the problem 12-13. In this paper, we show 

how to solve the Schrödinger equation numerically by 

using a finite difference method with a specific interaction, 

namely the Lennard-Jones potential. The latter potential 

is expected to be an interaction potential in the reversed 

process of making a bound state for the atomic layer 

deposition thin film technique for our future work. So our 

present study will be beneficial for that future project. 

The formalism and method 
In order to analyze a spherically symmetric system we 

write the general form of Hamiltonian as

   (2)

and for

   (3)

 where  stands for the linear momentum  

operator,  is the angular momentum operator and  

is for the interaction potential. The (12-6) Lennard-Jones 

potential can be expressed in term of the radius as  

(numbers in round bracket are the exponent of two terms 

in square bracket respectively)

 

   (4)

 

 where  is the reduced mass of two particles, 

 represents the relative distance between the particles, 

 is the equilibrium distance or the classical turning point 

and  stands for the intensity parameter of the potential. 

The bound state energies, which are defined by the  

angular momentum quantum number  are shown in 

figure 1 for various values of its angular momentum. The 

relation of potential  and the relative distance  

following from eq. (4) is shown in Figure 2. 

 Substituting eq. (4) into the Hamiltonian eq. (3) 

leads to the Schrödinger equation; then, we use the 

separation of variables method to define the wave  

functions in term of radius, azimuthal and horizontal  

angles as

 

   (5)

 This method is very useful in the spherical  

symmetry. Following this assumption, we obtain the  

partial differential equations including of radial and 

spherical harmonic wave functions. The equation of  
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motion that is obtained in the radial wave function with 

the spherical symmetry is shown as follows.

 

    (6)

 For the expression of the radial wave equation 

in terms of unitless radial variable, we let  and 

the unitless energy parameter we also let 

So the new radial wave function is as follows.

   (7)

 Then the equation of motion in eq. (6) and (7) 

can be rewritten as 

 

   (8)

 The atomic unit is usually used in the SI unit for 

the solutions. However, for convenience we choose the 

unit of physical quantities as followed in Table 1. 

Figure 1 The bounded energy parameter versus the intensity of Lennard-Jones potential by varying the intensity of 

range of  This relation shows the ground state of the angular momentum quantum number 

 and the first excited state 

Figure 2  Generalized Lennard-Jones potential  r is the radius and  is the equilibrium distance (the clas-

sical turning point of the minima of potential).
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Table 1 Relationship of quantity between SI and atomic units 

Quantity SI unit Atomic Unit Comparison 

Energy J, eV Hatree 1 Hatree = 27.2 eV

Mass kg, eV/c2 m
e

1 m
e
 = 9.1x10-31 kg

Length m, Å Bohr’s radius 1 Bohr’s radius = 0.529 Å 

For simplicity, we set 

 1. Procedures of numerical methods

 According to the partial differential equations in 

eqs. (6)-(8), it is difficult to solve for the exact solution. 

To solve the approximate solution for sake of brevity, we 

introduce the numerical method for this problem. In this 

article, we prefer to present the method that is used to 

solve for the eigenvalues, λ and eigenvectors, Ψ (or  

eigenenergies and eigenstates respectively), by using the 

finite difference method on the real space.

 The finite difference method16-19 is the develop-

ment to estimate the solution of a differential equation. 

Some coefficients come from the Taylor series. The small 

step size is defined as  and the coefficient is brought 

to multiply with parameters. We show how this method 

works as following:

  (9)

and

  (10)

where 

 (11)

  is called the nth truncations error. The 

combination between eqs. (9) and (10), leads to

 (12)

 As for the centered two points stencil for the first 

and the centered three points stencil for the second order 

derivative approximation, are shown as in eqs. (13) and 

(14) respectively, 

  (13)

and

 (14)

 Changing the indices of implementation into i , 

we have the first and second derivatives in terms of i

respectively as

  (15)

  (16)

Figure 3 Define the position in finite difference method

 2. The Eigenvalue equation and estimated 

values by using finite difference method

 According to the quantum matrix mechanism as

  (17)

 where  is the square Hamiltonian matrix, in 

which every diagonal elements does not vanish. The 

specific vector  is called the eigenvector which can span 

in term of matrix  and multiply by the constant  is 

the so-called eigenvalue. Then, we introduce the deter-

minant equation, to find the eigenvalue as
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   (18)

 where  is an identity matrix  Consider 

the energy level from the wave function only the radial 

wave function in eq. (6) by using the finite difference 

method, the equation of motion in the radial part yields 

as eq. (19). By using the atomic unit, we can create the 

update equation

 which is the matrix formalism in eqs. (20) and 

(21)

 (19)

 (20)

 multiplying by  on both sides of eq. (20) 

to obtain

 (21)

 In this paper, we consider only the radial part 

wave function,  because only this part yields the  

eigenvalue in each states. The coefficients in eq. (21) are 

used to create the Hamiltonian matrix  which is the 

 square matrix. As in the calculation for the  

eigenvalues and eigenvectors, we have to use this  

Hamiltonian matrix where the parameter of eigenvalue is 

 The eigenenergy is in the form of   

inally, we calculate the wave function  from this  

method. The solution of  or  is the diagonal matrix but 

 is in the column matrix. The treatment of the  

Hamiltonian matrix is to concern in the indices  from 1 

to N. We obtain the eigenvalue equation as follow in the 

eqs.(22) and (23):

  (22)

  (23)

 The computational solution using the finite  

difference method, in the implementation, we define the 

radius between two particles  equals 5 Bohr radius 

by spanning the small pieces of area of 2000 slots 

(  is a number of Max Step). Each slot is called a step 

size ( Step Size = ). We let the intensity of 

potential  by using the relationship between the 

unitless of energy and intensity potential parameters5 in 

figure 1. The ground state and the excited states are 

defined by the principal quantum number  and the 

angular quantum number, .

The results of numerical method 
According to the ground state energy of  and  

where these quantum number refer to the S-orbital and 

the excited energies of  refer to the higher orbitals. 

The radial probability distribution  versus 

the unitless ratio of radius  is shown in figures 

4(a)-4(e) with the increasing of the energy parameters of 

bound state  for the first-five states i.e. = 1 to 5 equal 

to -28.5887, -1.2399, 1.4189, 4.6293 and 9.3165 respec-

tively.
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Figure 4 Plot of the radial probability distribution as a function of z where (a) The ground state  and 

 (b) The 1st excited state,  and  (c) The 2nd excited state, 

 and  (d) The 3rd excited state,  and  (e) The 4th  

excited state, , and 

Discussion and conclusion
 The bound state energies of two-particle system 

in the Lennard-Jones potential are studied in several 

states and correspond to the spanned wave function in 

each quantum state. We have considered the numerical 

solution by using a finite difference method and showed 

the graphical solution by the radial probability distribution 

of the first-five states,  = 1 to 5. The negative energy 

levels refer to the bound state because of the influence 

of the potential energy is greater than the kinetic energy. 

In the other way, the positive energy levels refer to the 

excited (unbound) state of particles, which means when 

we increase  (principle quantum number) then the  

energy level of two-particle system is also increased. So 

they are in excited state or unbounded state. The 

numerical results show that it is easy to excite the  

two-particle system. The number of peaks in Figure 4 

refers to the principal quantum number 18-19.

 The accuracy of the calculation depends on 

numbers of step size  or the width of potential well 

 In this implementation, we choose the width of the 

potential well of 5 Bohr radius then the numerical unitless 

max step and step size are 2000 and 0.0025, respec-

tively. The results are represented for the energy levels 

of the first-five states which are illustrated in F igure 4.

 As the results, the finite difference method is 

used to implement calculation of the energy levels and 

the radial probability distribution of the one dimensional 
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Schrödinger equation with the Lennard-Jones potential. 

This proposed method is highly useful, efficient and easy 

to implement.

 The finite difference scheme is wildly used in 

several research problems even referred to the differential 

equation with the truncation error of  for a centered 

three points stencil for a second derivative. 
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